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Let E/Q be an elliptic curve over Q, N = cond(E/Q).

By the modularity theorem, we have the weight two Hecke
eigenform f = fg of level N that is associated to E/Q.

In terms of L-functions:

L(s,E/Q) = L(s, f)

And more generally, for any Dirichlet character x:

L(s,E/Q,x) = L(s,f,x)
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We assume that y is even. Define:

CXL(]-a E/Qa X)

T(X)QE/Q

L8(1,E/Q, ) :=

where c, is the conductor of the Dirichlet character x, 7(x) is the
Gauss sum of y, and

Qf :/ w
E/Q E(R)’ £/ql

for a choice of global invariant 1-form wg /q of £/Q.
By old results of Shimura, we have:

L*(1,E/Q,x) € Q(x) € Q
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Introduction

In particular, if x is an even quadratic Dirichlet character, then we
have: 12
CX L(]-a E/Qa X)

+
Qe /q

L*8(1,E/Q,x) = €Q

Now, in addition to the elliptic curve E/Q, we also consider an
extra data given by a real quadratic extension M/Q, whose
discriminant is noted as Dy.

For the rest of the lecture, we assume, concerning the data £/Q
and M/Q, the following:
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Modified Heegner Hypothesis

N = cond(E/Q) can be factorized as N = N - N_, where

e N, and N_ are relatively prime.

e N_ is square-free, and is equal to a product of an odd
number of distinct primes.

e All primes dividing N split in M, while all primes dividing N_
are inert in M.

So in particular, all primes dividing N are unramified in M.
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Quadratic Base Change

Consider E/M. It is again modular, by the theory of quadratic
base change on the automorphic side. Namely E/M is associated
to the parallel weight two Hilbert modular Hecke eigenform f over
the real quadratic field M, with f being the base change of f from
GL2/Q to GL2/M

At the level of L-functions, we have, with ¢ being the even
quadratic Dirichlet character that corresponds to M/Q:

L(s, E/M) = L(s,E/Q) - L(s, E/Q, )
L(s,f) = L(s,f)- L(s, f,9)
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Quadratic Base Change

We have the equality of L-functions:

L(s,E/M) = L(s,f)
The conductor of E/M and f is given by NOy.
An important point: the signs of the functional equation for
L(s,E/Q) = L(s,f) and L(s, E/Q,%) = L(s, f, ) differs by
multiplication by the (—N):

P(=N) = P(=1) - (Ny.) - p(N-)

which is —1 by the modified Heegner hypothesis.
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Darmon’s program

Since L(s,E/M) = L(s,E/Q) - L(s, E/Q, %), it follows that the
sign of the functional equation for L(s, E/M) is always equal to
—1.

In particular L(1, E/M) = 0. Arithmetic significance of
L'(1,E/M)?

Darmon’s program: to develop an analogue of the theory of
Heegner points and Gross-Zagier formulas, in the context of real
quadratic extensions of Q; p-adic analytic methods are crucial in
Darmon'’s program, for example in his construction of
Stark-Heegner points on elliptic curves.
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Preparation for the statement of Main Theorem

To state our main theorem, we first consider a class C of quadratic
Hecke characters § = ®/,6, of Ay,/M*, satisfying the following
local conditions:

e § is unramified at the places v dividing N.

e J, is trivial for v|oc.

e Jy is trivial for [ dividing N..

e J; is nontrivial, i.e. §(m) = —1, for [ dividing N_.
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Preparation for the statement of Main Theorem

For any such § € C, the sign of the functional equation for
L(s,E/M,5) = L(s,f,0) is opposite to that of
L(s, E/M) = L(s,f).

Thus the sign of the functional equation for
L(s,E/M,5) = L(s,f,0) is +1.

By the theorem of Friedberg-Hoffstein, there exists infinitely many
such quadratic Hecke characters 6 € C of Ay,/M*, satisfying the
nonvanishing condition L(1,E/M,§) = L(1,f,5) # 0.
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We now define:

Dy (N qes)Y2L(1, E/M, 5)

(% o)

L*8(1,E/M,5) :=

Techniques of Shimura allow one to show that
L?%(1,E/M,$) € Q.

We are interested in studying, for § € C, the numbers
L2%8(1,E/M,§), up to multiplication by squares of (non-zero)
rational numbers.



Statement of Main Theorem

Our main theorem is as follows (to appear in the Transactions of
the AMS):



Statement of Main Theorem

Our main theorem is as follows (to appear in the Transactions of
the AMS):

Suppose that L'(1, E/M) # 0.



Statement of Main Theorem

Our main theorem is as follows (to appear in the Transactions of
the AMS):

Suppose that L'(1, E/M) # 0. Then for any ¢ € C, we have:

La/g(l, E/M,$) =2 x square of a rational number
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e For any 0 € C, we have that §|,x is nontrivial; thus
Waldspurger's central L-value formula could not be directly
applied to the L-value L(1, E/M.,J).

e Our main theorem is consistent with the rank zero case of the
Birch and Swinnerton-Dyer conjecture. In particular we expect
that the statement of the main theorem should remain valid
(at least up to a factor of two), even without the condition
that L'(1, E/M) # 0.

e The original motivation for establishing our main theorem is
to understand a certain p-adic Gross-Zagier type formula of
Bertolini-Darmon.
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Remarks on the Main Theorem

Some ideas on the proof:

e Use the Friedberg-Hoffstein theorem to construct suitable
imaginary quadratic extensions of Q and CM-extensions of M,
where Gross-Zagier formulas (as generalized by Shouwu
Zhang) for central L-values and central L-derivatives are
applicable. Then express L(1,E/M,¢) in terms of these
auxiliary central L-values and central L-derivatives.

e The condition L'(1, E/M) # 0 is needed, because Kolyvagin's
theorem is used at one and crucial point of the argument (to
cancel the transcendental factors coming from the Neron-Tate
heights of Heegner points).

e Use results of Ribet-Takahashi concerning degree of modular
parametrization of elliptic curve over Q by modular curve (and
similar results in the setting of totally real fields).
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Application to a p-adic Gross-Zagier type formula of
Bertolini-Darmon

For the rest of the talk, assume N_ is equal to a single odd prime
p (the modified Heegner hypothesis is still in force). In particular
E/Q has multiplicative reduction at the prime p. Assume in
addition that E/Q has split multiplicative reduction at the prime
p, i.e. ap(f) =+1.

We have the Mazur-Tate-Teitelbaum p-adic L-function
Ly(s,E/Q) = Lp(s, f). From the condition that E/Q has split
multiplicative reduction at p, we have the exceptional sign
change phenomenon: the sign of the functional equation for
Ly(s, E/Q) is opposite to that of L(s, E/Q).
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Application to a p-adic Gross-Zagier type formula of
Bertolini-Darmon

In general the p-adic interpolation property of p-adic L-function
gives:

L 1 .L(l,E/Q)
Ly(1,E/Q) = (1 ap(f)) Qfq

and hence we always have L,(1, E/Q) = 0 irregardless of the value
of L(1,E/Q), i.e. a trivial zero.

Thus if we assume that the sign of the functional equation for
L(s, E/Q) being equal to —1, then the sign of the functional
equation for Ly(s, E/Q) is equal to +1, and we have
Ly(1,E/Q) =0,L,(1,E/Q) =0, so it is of interest to study the
second derivative Li(1, E/Q).
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Application to a p-adic Gross-Zagier type formula of
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Bertolini-Darmon: instead of considering derivative with respect to
the s-variable (the cyclotomic variable), consider derivative with
respect to the weight variable k, in the context of a Hida family
containing f, and also in the context of quadratic base change
with respect to the real quadratic field M.

Note that, with the sign of the functional equation for L(s, E/Q)
being equal to —1 (and thus the sign of the functional equation for
L(s, E/Q, %) is equal to +1), we have

L'(L,E/M)=L'(1,E/Q) - L(1,E/Q,v).

Thus let F = {fx} be a Hida family containing f. Here f, = f, and
for k > 2, k=2mod p — 1 (and k sufficiently close to 2
p-adically), we have that f; is a Hecke eigenform of weight k.
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Let § be the quadratic base change of F from GLj/q to GLy .
Thus § = {fx} is a Hida family of parallel weights Hilbert modular
Hecke eigenforms over M; one has that f; is the base change of f,
from GLy/q to GLy,p; in particular f; = f.
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attached to f.

In addition we have the two variable p-adic L-function
Ly(s,8) = Lp(s, {fi}) associated to the parallel weights Hida
family §, that interpolates the p-adic L-function L (s, fi)
associated to each fi. We denote this simply as Ly(s, k).
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Hecke eigenforms over M; one has that f; is the base change of f,
from GLy/q to GLy,p; in particular f; = f.

We have the p-adic L-function L,(s, fx) = Lp(s, fx) - Lp(s, fi, )
attached to f.

In addition we have the two variable p-adic L-function

Ly(s,8) = Lp(s, {fi}) associated to the parallel weights Hida
family §, that interpolates the p-adic L-function L (s, fi)
associated to each f,. We denote this simply as Ly(s, k). We are
interested in the values of this two-variable p-adic L-function on
the line s = k/2.
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We have the following theorem: as before assume that E£/Q has
split-multiplicative reduction at p, and that the sign of the
functional equation for L(s, E/Q) is equal to —1. Then we have
the formula:
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Here logg , is the p-adic logarithm on E/Q, defined using Tate's
p-adic uniformization of E/Q,, and P € E(M) ® Q;
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We have the following theorem: as before assume that E£/Q has
split-multiplicative reduction at p, and that the sign of the
functional equation for L(s, E/Q) is equal to —1. Then we have
the formula:
d2 5
Zalo(k/2,K)| =2 (loge ,(P))

Here logg , is the p-adic logarithm on E/Q, defined using Tate's
p-adic uniformization of E/Qp, and P € E(M)® Q; P is
non-torsion iff L'(1, E/M) # 0 (thus if L’(1, E/M) = 0 then both
sides of the formula are zero).
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Application to a p-adic Gross-Zagier type formula of
Bertolini-Darmon

This formula was proved by Bertolini-Darmon in their paper Hida
families and rational points on elliptic curves, in the case where
E/Q satisfies the extra condition that it has multiplicative
reduction at some prime g|N;..

Without this extra condition, | had shown in a previous work that
the following formula holds:
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where P € E(M) ® Q as before, and / is a rational number, with:
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d2

Zalo(k/2,K)| = (loge o(P))?

where P € E(M) ® Q as before, and / is a rational number, with:
(= L1°%(1,E/M,5) mod (Q*)?

for any § € C with L(1,E/M,¢) # 0.
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d2 k/2, k SYA( P))?
szt Lp(k/2, k) o = - (logg »(P))

where P € E(M) ® Q as before, and / is a rational number, with:
(= L1°%(1,E/M,5) mod (Q*)?
for any § € C with L(1,E/M,¢) # 0.

Our main theorem on special values thus amounts to saying that ¢
is two times the square of a rational number. Consequently the
Bertolini-Darmon formula holds without the extra condition.



