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Introduction

Let E/Q be an elliptic curve over Q, N = cond(E/Q).

By the modularity theorem, we have the weight two Hecke
eigenform f = fE of level N that is associated to E/Q.

In terms of L-functions:

L(s,E/Q) = L(s, f )

And more generally, for any Dirichlet character χ:

L(s,E/Q, χ) = L(s, f , χ)
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Introduction

We assume that χ is even. Define:

Lalg (1,E/Q, χ) :=
cχL(1,E/Q, χ)

τ(χ)Ω+
E/Q

where cχ is the conductor of the Dirichlet character χ, τ(χ) is the
Gauss sum of χ, and

Ω+
E/Q =

∫
E(R)
|ωE/Q|

for a choice of global invariant 1-form ωE/Q of E/Q.

By old results of Shimura, we have:

Lalg (1,E/Q, χ) ∈ Q(χ) ⊂ Q
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Introduction

In particular, if χ is an even quadratic Dirichlet character, then we
have:

Lalg (1,E/Q, χ) =
c
1/2
χ L(1,E/Q, χ)

Ω+
E/Q

∈ Q

Now, in addition to the elliptic curve E/Q, we also consider an
extra data given by a real quadratic extension M/Q, whose
discriminant is noted as DM .

For the rest of the lecture, we assume, concerning the data E/Q
and M/Q, the following:
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Modified Heegner Hypothesis

N = cond(E/Q) can be factorized as N = N+ · N−, where

• N+ and N− are relatively prime.

• N− is square-free, and is equal to a product of an odd
number of distinct primes.

• All primes dividing N+ split in M, while all primes dividing N−
are inert in M.

So in particular, all primes dividing N are unramified in M.
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Quadratic Base Change

Consider E/M. It is again modular, by the theory of quadratic
base change on the automorphic side.

Namely E/M is associated
to the parallel weight two Hilbert modular Hecke eigenform f over
the real quadratic field M, with f being the base change of f from
GL2/Q to GL2/M .

At the level of L-functions, we have, with ψ being the even
quadratic Dirichlet character that corresponds to M/Q:

L(s,E/M) = L(s,E/Q) · L(s,E/Q, ψ)

L(s, f) = L(s, f ) · L(s, f , ψ)
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Quadratic Base Change

We have the equality of L-functions:

L(s,E/M) = L(s, f)

The conductor of E/M and f is given by NOM .

An important point: the signs of the functional equation for
L(s,E/Q) = L(s, f ) and L(s,E/Q, ψ) = L(s, f , ψ) differs by
multiplication by the ψ(−N):

ψ(−N) = ψ(−1) · ψ(N+) · ψ(N−)

which is −1 by the modified Heegner hypothesis.
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Darmon’s program

Since L(s,E/M) = L(s,E/Q) · L(s,E/Q, ψ), it follows that the
sign of the functional equation for L(s,E/M) is always equal to
−1.

In particular L(1,E/M) = 0. Arithmetic significance of
L′(1,E/M)?

Darmon’s program: to develop an analogue of the theory of
Heegner points and Gross-Zagier formulas, in the context of real
quadratic extensions of Q; p-adic analytic methods are crucial in
Darmon’s program, for example in his construction of
Stark-Heegner points on elliptic curves.
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Preparation for the statement of Main Theorem

To state our main theorem, we first consider a class C of quadratic
Hecke characters δ = ⊗′vδv of A×M/M

×,

satisfying the following
local conditions:

• δ is unramified at the places v dividing N.

• δv is trivial for v |∞.

• δl is trivial for l dividing N+.

• δl is nontrivial, i.e. δl(πl) = −1, for l dividing N−.
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Preparation for the statement of Main Theorem

For any such δ ∈ C, the sign of the functional equation for
L(s,E/M, δ) = L(s, f, δ) is opposite to that of
L(s,E/M) = L(s, f).

Thus the sign of the functional equation for
L(s,E/M, δ) = L(s, f, δ) is +1.

By the theorem of Friedberg-Hoffstein, there exists infinitely many
such quadratic Hecke characters δ ∈ C of A×M/M

×, satisfying the
nonvanishing condition L(1,E/M, δ) = L(1, f, δ) 6= 0.
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We now define:

Lalg (1,E/M, δ) :=
D

1/2
M (NM/Qcδ)

1/2L(1,E/M, δ)

(Ω+
E/Q)2

Techniques of Shimura allow one to show that
Lalg (1,E/M, δ) ∈ Q.

We are interested in studying, for δ ∈ C, the numbers
Lalg (1,E/M, δ), up to multiplication by squares of (non-zero)
rational numbers.
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Statement of Main Theorem

Our main theorem is as follows (to appear in the Transactions of
the AMS):

Suppose that L′(1,E/M) 6= 0. Then for any δ ∈ C, we have:

Lalg (1,E/M, δ) = 2× square of a rational number
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Remarks on the Main Theorem

• For any δ ∈ C, we have that δ|A×
Q

is nontrivial;

thus

Waldspurger’s central L-value formula could not be directly
applied to the L-value L(1,E/M, δ).

• Our main theorem is consistent with the rank zero case of the
Birch and Swinnerton-Dyer conjecture. In particular we expect
that the statement of the main theorem should remain valid
(at least up to a factor of two), even without the condition
that L′(1,E/M) 6= 0.

• The original motivation for establishing our main theorem is
to understand a certain p-adic Gross-Zagier type formula of
Bertolini-Darmon.
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Remarks on the Main Theorem

Some ideas on the proof:

• Use the Friedberg-Hoffstein theorem to construct suitable
imaginary quadratic extensions of Q and CM-extensions of M,
where Gross-Zagier formulas (as generalized by Shouwu
Zhang) for central L-values and central L-derivatives are
applicable. Then express L(1,E/M, δ) in terms of these
auxiliary central L-values and central L-derivatives.

• The condition L′(1,E/M) 6= 0 is needed, because Kolyvagin’s
theorem is used at one and crucial point of the argument (to
cancel the transcendental factors coming from the Neron-Tate
heights of Heegner points).

• Use results of Ribet-Takahashi concerning degree of modular
parametrization of elliptic curve over Q by modular curve (and
similar results in the setting of totally real fields).
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Application to a p-adic Gross-Zagier type formula of
Bertolini-Darmon

For the rest of the talk, assume N− is equal to a single odd prime
p (the modified Heegner hypothesis is still in force).

In particular
E/Q has multiplicative reduction at the prime p. Assume in
addition that E/Q has split multiplicative reduction at the prime
p, i.e. ap(f ) = +1.

We have the Mazur-Tate-Teitelbaum p-adic L-function
Lp(s,E/Q) = Lp(s, f ). From the condition that E/Q has split
multiplicative reduction at p, we have the exceptional sign
change phenomenon: the sign of the functional equation for
Lp(s,E/Q) is opposite to that of L(s,E/Q).



Application to a p-adic Gross-Zagier type formula of
Bertolini-Darmon

For the rest of the talk, assume N− is equal to a single odd prime
p (the modified Heegner hypothesis is still in force). In particular
E/Q has multiplicative reduction at the prime p.

Assume in
addition that E/Q has split multiplicative reduction at the prime
p, i.e. ap(f ) = +1.

We have the Mazur-Tate-Teitelbaum p-adic L-function
Lp(s,E/Q) = Lp(s, f ). From the condition that E/Q has split
multiplicative reduction at p, we have the exceptional sign
change phenomenon: the sign of the functional equation for
Lp(s,E/Q) is opposite to that of L(s,E/Q).



Application to a p-adic Gross-Zagier type formula of
Bertolini-Darmon

For the rest of the talk, assume N− is equal to a single odd prime
p (the modified Heegner hypothesis is still in force). In particular
E/Q has multiplicative reduction at the prime p. Assume in
addition that E/Q has split multiplicative reduction at the prime
p, i.e. ap(f ) = +1.

We have the Mazur-Tate-Teitelbaum p-adic L-function
Lp(s,E/Q) = Lp(s, f ). From the condition that E/Q has split
multiplicative reduction at p, we have the exceptional sign
change phenomenon: the sign of the functional equation for
Lp(s,E/Q) is opposite to that of L(s,E/Q).



Application to a p-adic Gross-Zagier type formula of
Bertolini-Darmon

For the rest of the talk, assume N− is equal to a single odd prime
p (the modified Heegner hypothesis is still in force). In particular
E/Q has multiplicative reduction at the prime p. Assume in
addition that E/Q has split multiplicative reduction at the prime
p, i.e. ap(f ) = +1.

We have the Mazur-Tate-Teitelbaum p-adic L-function
Lp(s,E/Q) = Lp(s, f ).

From the condition that E/Q has split
multiplicative reduction at p, we have the exceptional sign
change phenomenon: the sign of the functional equation for
Lp(s,E/Q) is opposite to that of L(s,E/Q).



Application to a p-adic Gross-Zagier type formula of
Bertolini-Darmon

For the rest of the talk, assume N− is equal to a single odd prime
p (the modified Heegner hypothesis is still in force). In particular
E/Q has multiplicative reduction at the prime p. Assume in
addition that E/Q has split multiplicative reduction at the prime
p, i.e. ap(f ) = +1.

We have the Mazur-Tate-Teitelbaum p-adic L-function
Lp(s,E/Q) = Lp(s, f ). From the condition that E/Q has split
multiplicative reduction at p, we have the exceptional sign
change phenomenon:

the sign of the functional equation for
Lp(s,E/Q) is opposite to that of L(s,E/Q).



Application to a p-adic Gross-Zagier type formula of
Bertolini-Darmon

For the rest of the talk, assume N− is equal to a single odd prime
p (the modified Heegner hypothesis is still in force). In particular
E/Q has multiplicative reduction at the prime p. Assume in
addition that E/Q has split multiplicative reduction at the prime
p, i.e. ap(f ) = +1.

We have the Mazur-Tate-Teitelbaum p-adic L-function
Lp(s,E/Q) = Lp(s, f ). From the condition that E/Q has split
multiplicative reduction at p, we have the exceptional sign
change phenomenon: the sign of the functional equation for
Lp(s,E/Q) is opposite to that of L(s,E/Q).



Application to a p-adic Gross-Zagier type formula of
Bertolini-Darmon

In general the p-adic interpolation property of p-adic L-function
gives:

Lp(1,E/Q) = (1− 1

ap(f )
) · L(1,E/Q)

Ω+
E/Q

and hence we always have Lp(1,E/Q) = 0 irregardless of the value
of L(1,E/Q), i.e. a trivial zero.

Thus if we assume that the sign of the functional equation for
L(s,E/Q) being equal to −1, then the sign of the functional
equation for Lp(s,E/Q) is equal to +1, and we have
Lp(1,E/Q) = 0, L′p(1,E/Q) = 0, so it is of interest to study the
second derivative L′′p(1,E/Q).
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Application to a p-adic Gross-Zagier type formula of
Bertolini-Darmon

Bertolini-Darmon: instead of considering derivative with respect to
the s-variable (the cyclotomic variable),

consider derivative with
respect to the weight variable k, in the context of a Hida family
containing f , and also in the context of quadratic base change
with respect to the real quadratic field M.

Note that, with the sign of the functional equation for L(s,E/Q)
being equal to −1 (and thus the sign of the functional equation for
L(s,E/Q, ψ) is equal to +1), we have
L′(1,E/M) = L′(1,E/Q) · L(1,E/Q, ψ).

Thus let F = {fk} be a Hida family containing f . Here f2 = f , and
for k ≥ 2, k ≡ 2 mod p − 1 (and k sufficiently close to 2
p-adically), we have that fk is a Hecke eigenform of weight k.
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Application to a p-adic Gross-Zagier type formula of
Bertolini-Darmon

Let F be the quadratic base change of F from GL2/Q to GL2/M .

Thus F = {fk} is a Hida family of parallel weights Hilbert modular
Hecke eigenforms over M; one has that fk is the base change of fk
from GL2/Q to GL2/M ; in particular f2 = f.

We have the p-adic L-function Lp(s, fk) = Lp(s, fk) · Lp(s, fk , ψ)
attached to fk .

In addition we have the two variable p-adic L-function
Lp(s,F) = Lp(s, {fk}) associated to the parallel weights Hida
family F, that interpolates the p-adic L-function Lp(s, fk)
associated to each fk . We denote this simply as Lp(s, k). We are
interested in the values of this two-variable p-adic L-function on
the line s = k/2.
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We have the following theorem: as before assume that E/Q has
split-multiplicative reduction at p, and that the sign of the
functional equation for L(s,E/Q) is equal to −1.

Then we have
the formula:

d2

dk2
Lp(k/2, k)

∣∣∣
k=2

= 2 · (logE ,p(P))2

Here logE ,p is the p-adic logarithm on E/Qp defined using Tate’s
p-adic uniformization of E/Qp, and P ∈ E (M)⊗Q; P is
non-torsion iff L′(1,E/M) 6= 0 (thus if L′(1,E/M) = 0 then both
sides of the formula are zero).
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This formula was proved by Bertolini-Darmon in their paper Hida
families and rational points on elliptic curves,

in the case where
E/Q satisfies the extra condition that it has multiplicative
reduction at some prime q|N+.

Without this extra condition, I had shown in a previous work that
the following formula holds:
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= ` · (logE ,p(P))2

where P ∈ E (M)⊗Q as before, and ` is a rational number, with:

` ≡ Lalg (1,E/M, δ) mod (Q×)2

for any δ ∈ C with L(1,E/M, δ) 6= 0.

Our main theorem on special values thus amounts to saying that `
is two times the square of a rational number. Consequently the
Bertolini-Darmon formula holds without the extra condition.
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