On certain special values of L-functions associated to elliptic curves and real quadratic fields

Mo Zhongpeng
(Mok Chung Pang)

Soochow University

September 24th, 2020
Let E/\mathbb{Q} be an elliptic curve over \mathbb{Q}, $N = \text{cond}(E/\mathbb{Q})$.
Introduction

Let \(E/Q \) be an elliptic curve over \(\mathbb{Q} \), \(N = \text{cond}(E/Q) \).

By the modularity theorem, we have the weight two Hecke eigenform \(f = f_E \) of level \(N \) that is associated to \(E/Q \).
Let \(E/Q \) be an elliptic curve over \(Q \), \(N = \text{cond}(E/Q) \).

By the modularity theorem, we have the weight two Hecke eigenform \(f = f_E \) of level \(N \) that is associated to \(E/Q \).

In terms of \(L \)-functions:

\[
L(s, E/Q) = L(s, f)
\]
Introduction

Let E/Q be an elliptic curve over Q, $N = \text{cond}(E/Q)$.

By the modularity theorem, we have the weight two Hecke eigenform $f = f_E$ of level N that is associated to E/Q.

In terms of L-functions:

$$L(s, E/Q) = L(s, f)$$

And more generally, for any Dirichlet character χ:

$$L(s, E/Q, \chi) = L(s, f, \chi)$$
Introduction

We assume that χ is even. Define:

$$L^{alg}(1, E/Q, \chi) := \frac{c_{\chi}L(1, E/Q, \chi)}{\tau(\chi)\Omega^+_E}$$
Introduction

We assume that χ is even. Define:

$$L^\text{alg}(1, E/Q, \chi) := \frac{c_\chi L(1, E/Q, \chi)}{\tau(\chi) \Omega^+_E/Q}$$

where c_χ is the conductor of the Dirichlet character χ, $\tau(\chi)$ is the Gauss sum of χ, and

$$\Omega^+_E/Q = \int_E(R) |\omega_E/Q|$$

for a choice of global invariant 1-form ω_E/Q of E/Q. By old results of Shimura, we have:

$L^\text{alg}(1, E/Q, \chi) \in \mathbb{Q}(\chi) \subset \mathbb{Q}$
Introduction

We assume that χ is even. Define:

$$L^{alg}(1, E/Q, \chi) := \frac{c_\chi L(1, E/Q, \chi)}{\tau(\chi) \Omega^+_E/Q}$$

where c_χ is the conductor of the Dirichlet character χ, $\tau(\chi)$ is the Gauss sum of χ, and

$$\Omega^+_E/Q = \int_{E(R)} |\omega_{E/Q}|$$

for a choice of global invariant 1-form $\omega_{E/Q}$ of E/Q.
Introduction

We assume that χ is even. Define:

$$L^{\text{alg}}(1, E/\mathbb{Q}, \chi) := \frac{c_{\chi} L(1, E/\mathbb{Q}, \chi)}{\tau(\chi) \Omega_{E/\mathbb{Q}}^+}$$

where c_{χ} is the conductor of the Dirichlet character χ, $\tau(\chi)$ is the Gauss sum of χ, and

$$\Omega_{E/\mathbb{Q}}^+ = \int_{E(\mathbb{R})} |\omega_{E/\mathbb{Q}}|$$

for a choice of global invariant 1-form $\omega_{E/\mathbb{Q}}$ of E/\mathbb{Q}.

By old results of Shimura, we have:

$$L^{\text{alg}}(1, E/\mathbb{Q}, \chi) \in \mathbb{Q}(\chi) \subset \overline{\mathbb{Q}}$$
In particular, if χ is an even quadratic Dirichlet character, then we have:

$$L^{alg}(1, E/Q, \chi) = \frac{c_\chi^{1/2} L(1, E/Q, \chi)}{\Omega^+_E/Q} \in \mathbb{Q}$$
Introduction

In particular, if χ is an even quadratic Dirichlet character, then we have:

$$L^{\text{alg}}(1, E/\mathbb{Q}, \chi) = \frac{c_1^{1/2}L(1, E/\mathbb{Q}, \chi)}{\Omega_E^+} \in \mathbb{Q}$$

Now, in addition to the elliptic curve E/\mathbb{Q}, we also consider an extra data given by a real quadratic extension M/\mathbb{Q},
Introduction

In particular, if χ is an even quadratic Dirichlet character, then we have:

$$L^{alg}(1, E/Q, \chi) = \frac{c_{\chi}^{1/2}L(1, E/Q, \chi)}{\Omega^{+}_{E/Q}} \in \mathbb{Q}$$

Now, in addition to the elliptic curve E/Q, we also consider an extra data given by a real quadratic extension M/Q, whose discriminant is noted as D_{M}.
In particular, if χ is an even quadratic Dirichlet character, then we have:

$$L^{alg}(1, E/\mathbb{Q}, \chi) = \frac{c_\chi^{1/2}L(1, E/\mathbb{Q}, \chi)}{\Omega^+_E/\mathbb{Q}} \in \mathbb{Q}$$

Now, in addition to the elliptic curve E/\mathbb{Q}, we also consider an extra data given by a real quadratic extension M/\mathbb{Q}, whose discriminant is noted as D_M.

For the rest of the lecture, we assume, concerning the data E/\mathbb{Q} and M/\mathbb{Q}, the following:
Modified Heegner Hypothesis

\[N = \text{cond}(E/Q) \] can be factorized as \(N = N_+ \cdot N_- \), where

- \(N_- \) is square-free, and is equal to a product of an odd number of distinct primes.
- All primes dividing \(N_+ \) split in \(M \), while all primes dividing \(N_- \) are inert in \(M \).
- So in particular, all primes dividing \(N \) are unramified in \(M \).
Modified Heegner Hypothesis

\[N = \text{cond}(E/Q) \] can be factorized as \[N = N_+ \cdot N_- \], where

- \(N_+ \) and \(N_- \) are relatively prime.
Modified Heegner Hypothesis

\[N = \text{cond}(E/\mathbb{Q}) \] can be factorized as \[N = N_+ \cdot N_- \], where

- \(N_+ \) and \(N_- \) are relatively prime.
- \(N_- \) is square-free, and is equal to a product of an odd number of distinct primes.
Modified Heegner Hypothesis

\[N = \text{cond}(E/Q) \] can be factorized as \(N = N_+ \cdot N_- \), where

- \(N_+ \) and \(N_- \) are relatively prime.
- \(N_- \) is square-free, and is equal to a product of an odd number of distinct primes.
- All primes dividing \(N_+ \) split in \(M \), while all primes dividing \(N_- \) are inert in \(M \).
Modified Heegner Hypothesis

\[N = \text{cond}(E/\mathbb{Q}) \text{ can be factorized as } N = N_+ \cdot N_- , \text{ where} \]

- \(N_+ \) and \(N_- \) are relatively prime.
- \(N_- \) is square-free, and is equal to a product of an \textbf{odd} number of distinct primes.
- All primes dividing \(N_+ \) split in \(M \), while all primes dividing \(N_- \) are inert in \(M \).

So in particular, all primes dividing \(N \) are unramified in \(M \).
Consider E/M. It is again modular, by the theory of quadratic base change on the automorphic side.
Quadratic Base Change

Consider E/M. It is again modular, by the theory of quadratic base change on the automorphic side. Namely E/M is associated to the parallel weight two Hilbert modular Hecke eigenform f over the real quadratic field M, with f being the base change of f from GL_2/\mathbb{Q} to GL_2/M.

$$L(s, E/M) = L(s, E/Q) \cdot L(s, E/Q, \psi)$$

$$L(s, f) = L(s, f) \cdot L(s, f, \psi)$$
Consider E/M. It is again modular, by the theory of quadratic base change on the automorphic side. Namely E/M is associated to the parallel weight two Hilbert modular Hecke eigenform f over the real quadratic field M, with f being the base change of f from GL_2/\mathbb{Q} to GL_2/M.

At the level of L-functions, we have, with ψ being the even quadratic Dirichlet character that corresponds to M/\mathbb{Q}:

\[L(s, E/M) = L(s, E/\mathbb{Q}) \cdot L(s, E/\mathbb{Q}, \psi) \]

\[L(s, f) = L(s, f) \cdot L(s, f, \psi) \]
Quadratic Base Change

Consider \(E/M \). It is again modular, by the theory of quadratic base change on the automorphic side. Namely \(E/M \) is associated to the parallel weight two Hilbert modular Hecke eigenform \(f \) over the real quadratic field \(M \), with \(f \) being the base change of \(f \) from \(GL_2/Q \) to \(GL_2/M \).

At the level of \(L \)-functions, we have, with \(\psi \) being the even quadratic Dirichlet character that corresponds to \(M/Q \):

\[
L(s, E/M) = L(s, E/Q) \cdot L(s, E/Q, \psi)
\]

\[
L(s, f) = L(s, f) \cdot L(s, f, \psi)
\]
Quadratic Base Change

We have the equality of L-functions:

$$L(s, E/M) = L(s, f)$$

The conductor of E/M and f is given by $N\mathcal{O}_M$.

An important point: the signs of the functional equation for $L(s, E/Q) = L(s, f)$ and $L(s, E/Q, \psi) = L(s, f, \psi)$ differs by multiplication by the $\psi(\cdot)$:

$$\psi(-N) = \psi(-1) \cdot \psi(N+1) \cdot \psi(N-1)$$

which is -1 by the modified Heegner hypothesis.
Quadratic Base Change

We have the equality of L-functions:

$$L(s, E/M) = L(s, f)$$

The conductor of E/M and f is given by $N\mathcal{O}_M$.

An important point: the signs of the functional equation for $L(s, E/\mathbb{Q}) = L(s, f)$ and $L(s, E/\mathbb{Q}, \psi) = L(s, f, \psi)$ differs by multiplication by the $\psi(-N)$:
Quadratic Base Change

We have the equality of L-functions:

$$L(s, E/M) = L(s, f)$$

The conductor of E/M and f is given by $N \mathcal{O}_M$.

An important point: the signs of the functional equation for $L(s, E/Q) = L(s, f)$ and $L(s, E/Q, \psi) = L(s, f, \psi)$ differs by multiplication by the $\psi(-N)$:

$$\psi(-N) = \psi(-1) \cdot \psi(N_+) \cdot \psi(N_-)$$
Quadratic Base Change

We have the equality of L-functions:

$$L(s, E/M) = L(s, f)$$

The conductor of E/M and f is given by $N\mathcal{O}_M$.

An important point: the signs of the functional equation for $L(s, E/Q) = L(s, f)$ and $L(s, E/Q, \psi) = L(s, f, \psi)$ differs by multiplication by the $\psi(-N)$:

$$\psi(-N) = \psi(-1) \cdot \psi(N_+) \cdot \psi(N_-)$$

which is -1 by the modified Heegner hypothesis.
Darmon’s program

Since $L(s, E/M) = L(s, E/Q) \cdot L(s, E/Q, \psi)$, it follows that the sign of the functional equation for $L(s, E/M)$ is always equal to -1.

In particular $L(1, E/M) = 0$.

Arithmetic significance of $L'(1, E/M)$?

Darmon’s program: to develop an analogue of the theory of Heegner points and Gross-Zagier formulas, in the context of real quadratic extensions of \mathbb{Q}; p-adic analytic methods are crucial in Darmon’s program, for example in his construction of Stark-Heegner points on elliptic curves.
Darmon’s program

Since $L(s, E/M) = L(s, E/Q) \cdot L(s, E/Q, \psi)$, it follows that the sign of the functional equation for $L(s, E/M)$ is always equal to -1.

In particular $L(1, E/M) = 0$.
Since \(L(s, E/M) = L(s, E/Q) \cdot L(s, E/Q, \psi) \), it follows that the sign of the functional equation for \(L(s, E/M) \) is always equal to \(-1\).

In particular \(L(1, E/M) = 0 \). Arithmetic significance of \(L'(1, E/M) \)?
Since $L(s, E/M) = L(s, E/Q) \cdot L(s, E/Q, \psi)$, it follows that the sign of the functional equation for $L(s, E/M)$ is always equal to -1.

In particular $L(1, E/M) = 0$. Arithmetic significance of $L'(1, E/M)$?

Darmon’s program: to develop an analogue of the theory of Heegner points and Gross-Zagier formulas, in the context of real quadratic extensions of \mathbb{Q};
Darmon’s program

Since \(L(s, E/M) = L(s, E/Q) \cdot L(s, E/Q, \psi) \), it follows that the sign of the functional equation for \(L(s, E/M) \) is always equal to \(-1\).

In particular \(L(1, E/M) = 0 \). Arithmetic significance of \(L'(1, E/M) \)?

Darmon’s program: to develop an analogue of the theory of Heegner points and Gross-Zagier formulas, in the context of real quadratic extensions of \(\mathbb{Q} \); \(p \)-adic analytic methods are crucial in Darmon’s program, for example in his construction of Stark-Heegner points on elliptic curves.
To state our main theorem, we first consider a class \mathcal{C} of quadratic Hecke characters $\delta = \bigotimes'_v \delta_v$ of $\mathbf{A}_M^\times / M^\times$.

To state our main theorem, we first consider a class \mathcal{C} of quadratic Hecke characters $\delta = \bigotimes'_v \delta_v$ of $\mathbb{A}_M^\times / M^\times$, satisfying the following local conditions:

- δ is unramified at the places v dividing N.

To state our main theorem, we first consider a class \mathcal{C} of quadratic Hecke characters $\delta = \bigotimes'_{\nu} \delta_{\nu}$ of $\mathbb{A}_M^\times / M^\times$, satisfying the following local conditions:

- δ is unramified at the places ν dividing N.
- δ_{ν} is trivial for $\nu | \infty$.
To state our main theorem, we first consider a class \mathcal{C} of quadratic Hecke characters $\delta = \bigotimes'_v \delta_v$ of $\mathbb{A}_M^\times / M^\times$, satisfying the following local conditions:

- δ is unramified at the places v dividing N.
- δ_v is trivial for $v | \infty$.
- δ_l is trivial for l dividing N_+.
Preparation for the statement of Main Theorem

To state our main theorem, we first consider a class \mathcal{C} of quadratic Hecke characters $\delta = \bigotimes'_v \delta_v$ of $\mathbb{A}_M^\times/M^\times$, satisfying the following local conditions:

- δ is unramified at the places v dividing N.
- δ_v is trivial for $v|\infty$.
- δ_l is trivial for l dividing N_+.
- δ_l is nontrivial, i.e. $\delta_l(\pi_l) = -1$, for l dividing N_-.
Preparation for the statement of Main Theorem

For any such $\delta \in \mathcal{C}$, the sign of the functional equation for $L(s, E/M, \delta) = L(s, f, \delta)$ is opposite to that of $L(s, E/M) = L(s, f)$.

By the theorem of Friedberg-Hoffstein, there exists infinitely many such quadratic Hecke characters $\delta \in \mathcal{C}$ of $A \times M / M$, satisfying the nonvanishing condition $L(1, E/M, \delta) = L(1, f, \delta) \neq 0$.
Preparation for the statement of Main Theorem

For any such $\delta \in \mathcal{C}$, the sign of the functional equation for $L(s, E/M, \delta) = L(s, f, \delta)$ is opposite to that of $L(s, E/M) = L(s, f)$.

Thus the sign of the functional equation for $L(s, E/M, \delta) = L(s, f, \delta)$ is $+1$.

Preparation for the statement of Main Theorem

For any such $\delta \in C$, the sign of the functional equation for $L(s, E/M, \delta) = L(s, f, \delta)$ is opposite to that of $L(s, E/M) = L(s, f)$.

Thus the sign of the functional equation for $L(s, E/M, \delta) = L(s, f, \delta)$ is $+1$.

By the theorem of Friedberg-Hoffstein, there exists infinitely many such quadratic Hecke characters $\delta \in C$ of $\mathbb{A}_M^\times / M^\times$, satisfying the nonvanishing condition $L(1, E/M, \delta) = L(1, f, \delta) \neq 0$.
Preparation for the statement of Main Theorem

We now define:

\[L_{\text{alg}}(1, E/M, \delta) := \frac{D_{M}^{1/2}(\mathcal{N}_{M/Q}c_{\delta})^{1/2}L(1, E/M, \delta)}{(\Omega_{E/Q}^{+})^{2}} \]

Techniques of Shimura allow one to show that \(L_{\text{alg}}(1, E/M, \delta) \in \mathbb{Q}. \)
Preparation for the statement of Main Theorem

We now define:

\[L_{\text{alg}}(1, E/M, \delta) := \frac{D_M^{1/2}(N_{M/Q}c_\delta)^{1/2} L(1, E/M, \delta)}{(\Omega^+_E/Q)^2} \]

Techniques of Shimura allow one to show that \(L_{\text{alg}}(1, E/M, \delta) \in \mathbb{Q} \).

We are interested in studying, for \(\delta \in \mathcal{C} \), the numbers \(L_{\text{alg}}(1, E/M, \delta) \), up to multiplication by squares of (non-zero) rational numbers.
Our main theorem is as follows (to appear in the Transactions of the AMS):

Suppose that $L'(1, E/M) \neq 0$. Then for any $\delta \in C$, we have:

$L_{\text{alg}}(1, E/M, \delta) = 2 \times \text{square of a rational number}$
Our main theorem is as follows (to appear in the Transactions of the AMS):

Suppose that $L'(1, E/M) \neq 0$.
Statement of Main Theorem

Our main theorem is as follows (to appear in the Transactions of the AMS):

Suppose that $L'(1, E/M) \neq 0$. Then for any $\delta \in C$, we have:

$$L^{alg}(1, E/M, \delta) = 2 \times \text{square of a rational number}$$
Remarks on the Main Theorem

- For any $\delta \in \mathcal{C}$, we have that $\delta|_{A^\times}^\times$ is nontrivial;
Remarks on the Main Theorem

• For any $\delta \in C$, we have that $\delta|_{A_Q}$ is nontrivial; thus Waldspurger’s central L-value formula could not be directly applied to the L-value $L(1, E/M, \delta)$.

• Our main theorem is consistent with the rank zero case of the Birch and Swinnerton-Dyer conjecture. In particular we expect that the statement of the main theorem should remain valid (at least up to a factor of two), even without the condition that $L'(1, E/M) \neq 0$.

• The original motivation for establishing our main theorem is to understand a certain p-adic Gross-Zagier type formula of Bertolini-Darmon.
Remarks on the Main Theorem

- For any $\delta \in \mathcal{C}$, we have that $\delta|_{\mathbb{A}_Q^\times}$ is nontrivial; thus Waldspurger’s central L-value formula could not be directly applied to the L-value $L(1, E/M, \delta)$.

- Our main theorem is consistent with the rank zero case of the Birch and Swinnerton-Dyer conjecture.

The original motivation for establishing our main theorem is to understand a certain p-adic Gross-Zagier type formula of Bertolini-Darmon.
Remarks on the Main Theorem

- For any $\delta \in \mathcal{C}$, we have that $\delta|_{\mathbb{A}^\times_Q}$ is nontrivial; thus Waldspurger's central L-value formula could not be directly applied to the L-value $L(1, E/M, \delta)$.

- Our main theorem is consistent with the rank zero case of the Birch and Swinnerton-Dyer conjecture. In particular we expect that the statement of the main theorem should remain valid (at least up to a factor of two), even without the condition that $L'(1, E/M) \neq 0$.
Remarks on the Main Theorem

- For any $\delta \in \mathcal{C}$, we have that $\delta|_{A_{\mathbb{Q}}^\times}$ is nontrivial; thus Waldspurger’s central L-value formula could not be directly applied to the L-value $L(1, E/M, \delta)$.

- Our main theorem is consistent with the rank zero case of the Birch and Swinnerton-Dyer conjecture. In particular we expect that the statement of the main theorem should remain valid (at least up to a factor of two), even without the condition that $L'(1, E/M) \neq 0$.

- The original motivation for establishing our main theorem is to understand a certain p-adic Gross-Zagier type formula of Bertolini-Darmon.
Remarks on the Main Theorem

Some ideas on the proof:

• Use the Friedberg-Hoffstein theorem to construct suitable imaginary quadratic extensions of \mathbb{Q} and \mathbb{CM}-extensions of \mathbb{M}, where Gross-Zagier formulas (as generalized by Shouwu Zhang) for central L-values and central L-derivatives are applicable.

• Then express $L(1, E/M, \delta)$ in terms of these auxiliary central L-values and central L-derivatives.

• The condition $L'(1, E/M) \neq 0$ is needed, because Kolyvagin's theorem is used at one and crucial point of the argument (to cancel the transcendental factors coming from the Neron-Tate heights of Heegner points).

• Use results of Ribet-Takahashi concerning degree of modular parametrization of elliptic curve over \mathbb{Q} by modular curve (and similar results in the setting of totally real fields).
Remarks on the Main Theorem

Some ideas on the proof:

• Use the Friedberg-Hoffstein theorem to construct suitable imaginary quadratic extensions of \mathbb{Q} and CM-extensions of M,

• The condition $L'(1, E/M, \delta) \neq 0$ is needed, because Kolyvagin’s theorem is used at one and crucial point of the argument (to cancel the transcendental factors coming from the Neron-Tate heights of Heegner points).

• Use results of Ribet-Takahashi concerning degree of modular parametrization of elliptic curve over \mathbb{Q} by modular curve (and similar results in the setting of totally real fields).
Remarks on the Main Theorem

Some ideas on the proof:

- Use the Friedberg-Hoffstein theorem to construct suitable imaginary quadratic extensions of \mathbb{Q} and CM-extensions of M, where Gross-Zagier formulas (as generalized by Shouwu Zhang) for central L-values and central L-derivatives are applicable.

- The condition $L'(1, E/M, \delta) \neq 0$ is needed, because Kolyvagin's theorem is used at one and crucial point of the argument (to cancel the transcendental factors coming from the Neron-Tate heights of Heegner points).

- Use results of Ribet-Takahashi concerning degree of modular parametrization of elliptic curve over \mathbb{Q} by modular curve (and similar results in the setting of totally real fields).
Remarks on the Main Theorem

Some ideas on the proof:

• Use the Friedberg-Hoffstein theorem to construct suitable imaginary quadratic extensions of \mathbb{Q} and CM-extensions of M, where Gross-Zagier formulas (as generalized by Shouwu Zhang) for central L-values and central L-derivatives are applicable. Then express $L(1, E/M, \delta)$ in terms of these auxiliary central L-values and central L-derivatives.

• The condition $L'(1, E/M) \neq 0$ is needed, because Kolyvagin's theorem is used at one and crucial point of the argument (to cancel the transcendental factors coming from the Neron-Tate heights of Heegner points).

• Use results of Ribet-Takahashi concerning degree of modular parametrization of elliptic curve over \mathbb{Q} by modular curve (and similar results in the setting of totally real fields).
Remarks on the Main Theorem

Some ideas on the proof:

• Use the Friedberg-Hoffstein theorem to construct suitable imaginary quadratic extensions of \mathbb{Q} and CM-extensions of M, where Gross-Zagier formulas (as generalized by Shouwu Zhang) for central L-values and central L-derivatives are applicable. Then express $L(1, E/M, \delta)$ in terms of these auxiliary central L-values and central L-derivatives.

• The condition $L'(1, E/M) \neq 0$ is needed, because Kolyvagin’s theorem is used at one and crucial point of the argument (to cancel the transcendental factors coming from the Neron-Tate heights of Heegner points).
Remarks on the Main Theorem

Some ideas on the proof:

- Use the Friedberg-Hoffstein theorem to construct suitable imaginary quadratic extensions of \(\mathbb{Q} \) and \(CM \)-extensions of \(M \), where Gross-Zagier formulas (as generalized by Shouwu Zhang) for central \(L \)-values and central \(L \)-derivatives are applicable. Then express \(L(1, E/M, \delta) \) in terms of these auxiliary central \(L \)-values and central \(L \)-derivatives.

- The condition \(L'(1, E/M) \neq 0 \) is needed, because Kolyvagin’s theorem is used at one and crucial point of the argument (to cancel the transcendental factors coming from the Neron-Tate heights of Heegner points).

- Use results of Ribet-Takahashi concerning degree of modular parametrization of elliptic curve over \(\mathbb{Q} \) by modular curve (and similar results in the setting of totally real fields).
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

For the rest of the talk, assume N_- is equal to a single odd prime p (the modified Heegner hypothesis is still in force).
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

For the rest of the talk, assume N_- is equal to a single odd prime p (the modified Heegner hypothesis is still in force). In particular E/\mathbb{Q} has multiplicative reduction at the prime p.
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

For the rest of the talk, assume N_- is equal to a single odd prime p (the modified Heegner hypothesis is still in force). In particular E/\mathbb{Q} has multiplicative reduction at the prime p. Assume in addition that E/\mathbb{Q} has split multiplicative reduction at the prime p, i.e. $a_p(f) = +1$.
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

For the rest of the talk, assume N_- is equal to a single odd prime p (the modified Heegner hypothesis is still in force). In particular E/\mathbb{Q} has multiplicative reduction at the prime p. Assume in addition that E/\mathbb{Q} has \textit{split} multiplicative reduction at the prime p, i.e. $a_p(f) = +1$.

We have the Mazur-Tate-Teitelbaum p-adic L-function $L_p(s, E/\mathbb{Q}) = L_p(s, f)$.

Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

For the rest of the talk, assume N is equal to a single odd prime p (the modified Heegner hypothesis is still in force). In particular E/Q has multiplicative reduction at the prime p. Assume in addition that E/Q has split multiplicative reduction at the prime p, i.e. $a_p(f) = +1$.

We have the Mazur-Tate-Teitelbaum p-adic L-function $L_p(s, E/Q) = L_p(s, f)$. From the condition that E/Q has split multiplicative reduction at p, we have the exceptional sign change phenomenon:
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

For the rest of the talk, assume N_- is equal to a single odd prime p (the modified Heegner hypothesis is still in force). In particular E/\mathbb{Q} has multiplicative reduction at the prime p. Assume in addition that E/\mathbb{Q} has split multiplicative reduction at the prime p, i.e. $a_p(f) = +1$.

We have the Mazur-Tate-Teitelbaum p-adic L-function $L_p(s, E/\mathbb{Q}) = L_p(s, f)$. From the condition that E/\mathbb{Q} has split multiplicative reduction at p, we have the exceptional sign change phenomenon: the sign of the functional equation for $L_p(s, E/\mathbb{Q})$ is opposite to that of $L(s, E/\mathbb{Q})$.
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

In general the p-adic interpolation property of p-adic L-function gives:

$$L_p(1, E/Q) = \left(1 - \frac{1}{a_p(f)}\right) \cdot \frac{L(1, E/Q)}{\Omega^+_E/Q}$$
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

In general the p-adic interpolation property of p-adic L-function gives:

$$L_p(1, E/\mathbb{Q}) = (1 - \frac{1}{a_p(f)}) \cdot \frac{L(1, E/\mathbb{Q})}{\Omega^+_E/\mathbb{Q}}$$

and hence we always have $L_p(1, E/\mathbb{Q}) = 0$ irregardless of the value of $L(1, E/\mathbb{Q})$, i.e. a trivial zero.
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

In general the p-adic interpolation property of p-adic L-function gives:

$$L_p(1, E/Q) = (1 - \frac{1}{a_p(f)}) \cdot \frac{L(1, E/Q)}{\Omega^+_E/Q}$$

and hence we always have $L_p(1, E/Q) = 0$ irregardless of the value of $L(1, E/Q)$, i.e. a trivial zero.

Thus if we assume that the sign of the functional equation for $L(s, E/Q)$ being equal to -1, then the sign of the functional equation for $L_p(s, E/Q)$ is equal to $+1$, and we have $L_p(1, E/Q) = 0, L'_p(1, E/Q) = 0,$
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

In general the p-adic interpolation property of p-adic L-function gives:

$$L_p(1, E/Q) = (1 - \frac{1}{a_p(f)}) \cdot \frac{L(1, E/Q)}{\Omega^+_E/Q}$$

and hence we always have $L_p(1, E/Q) = 0$ irregardless of the value of $L(1, E/Q)$, i.e. a trivial zero.

Thus if we assume that the sign of the functional equation for $L(s, E/Q)$ being equal to -1, then the sign of the functional equation for $L_p(s, E/Q)$ is equal to $+1$, and we have $L_p(1, E/Q) = 0$, $L'_p(1, E/Q) = 0$, so it is of interest to study the second derivative $L''_p(1, E/Q)$.
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

Bertolini-Darmon: instead of considering derivative with respect to the s-variable (the cyclotomic variable),
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

Bertolini-Darmon: instead of considering derivative with respect to the s-variable (the cyclotomic variable), consider derivative with respect to the weight variable k,

$$L'(1, E/M) = L'(1, E/Q) \cdot L(1, E/Q, \psi).$$
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

Bertolini-Darmon: instead of considering derivative with respect to the s-variable (the cyclotomic variable), consider derivative with respect to the weight variable k, in the context of a Hida family containing f,

Thus let $F = \{f_k\}$ be a Hida family containing f, and for $k \geq 2$, $k \equiv 2 \pmod{p-1}$ (and k sufficiently close to $2p$-adically), we have that f_k is a Hecke eigenform of weight k.

Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

Bertolini-Darmon: instead of considering derivative with respect to the s-variable (the cyclotomic variable), consider derivative with respect to the weight variable k, in the context of a Hida family containing f, and also in the context of quadratic base change with respect to the real quadratic field M.
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

Bertolini-Darmon: instead of considering derivative with respect to the s-variable (the cyclotomic variable), consider derivative with respect to the weight variable k, in the context of a Hida family containing f, and also in the context of quadratic base change with respect to the real quadratic field M.

Note that, with the sign of the functional equation for $L(s, E/Q)$ being equal to -1 (and thus the sign of the functional equation for $L(s, E/Q, \psi)$ is equal to $+1$), we have $L'(1, E/M) = L'(1, E/Q) \cdot L(1, E/Q, \psi)$.
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

Bertolini-Darmon: instead of considering derivative with respect to the s-variable (the cyclotomic variable), consider derivative with respect to the weight variable k, in the context of a Hida family containing f, and also in the context of quadratic base change with respect to the real quadratic field M.

Note that, with the sign of the functional equation for $L(s, E/Q)$ being equal to -1 (and thus the sign of the functional equation for $L(s, E/Q, \psi)$ is equal to $+1$), we have

$L'(1, E/M) = L'(1, E/Q) \cdot L(1, E/Q, \psi)$.

Thus let $\mathcal{F} = \{f_k\}$ be a Hida family containing f.

Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

Bertolini-Darmon: instead of considering derivative with respect to the s-variable (the cyclotomic variable), consider derivative with respect to the weight variable k, in the context of a Hida family containing f, and also in the context of quadratic base change with respect to the real quadratic field M.

Note that, with the sign of the functional equation for $L(s, E/Q)$ being equal to -1 (and thus the sign of the functional equation for $L(s, E/Q, \psi)$ is equal to $+1$), we have

$$L'(1, E/M) = L'(1, E/Q) \cdot L(1, E/Q, \psi).$$

Thus let $\mathcal{F} = \{f_k\}$ be a Hida family containing f. Here $f_2 = f$, and for $k \geq 2$, $k \equiv 2 \mod p - 1$ (and k sufficiently close to 2 p-adically), we have that f_k is a Hecke eigenform of weight k.
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

Let \mathcal{F} be the quadratic base change of \mathcal{F} from GL_2/\mathbb{Q} to GL_2/M.
Application to a \(p \)-adic Gross-Zagier type formula of Bertolini-Darmon

Let \(\mathcal{F} \) be the quadratic base change of \(\mathcal{F} \) from \(GL_2/\mathbb{Q} \) to \(GL_2/M \). Thus \(\mathcal{F} = \{ f_k \} \) is a Hida family of parallel weights Hilbert modular Hecke eigenforms over \(M \);
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

Let \mathcal{F} be the quadratic base change of \mathcal{F} from GL_2/\mathbb{Q} to GL_2/M. Thus $\mathcal{F} = \{f_k\}$ is a Hida family of parallel weights Hilbert modular Hecke eigenforms over M; one has that f_k is the base change of f_k from GL_2/\mathbb{Q} to GL_2/M; in particular $f_2 = f$.
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

Let \mathcal{F} be the quadratic base change of \mathcal{F} from GL_2/\mathbb{Q} to GL_2/M. Thus $\mathcal{F} = \{f_k\}$ is a Hida family of parallel weights Hilbert modular Hecke eigenforms over M; one has that f_k is the base change of f_k from GL_2/\mathbb{Q} to GL_2/M; in particular $f_2 = f$.

We have the p-adic L-function $L_p(s, f_k) = L_p(s, f_k) \cdot L_p(s, f_k, \psi)$ attached to f_k.
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

Let \mathcal{F} be the quadratic base change of \mathcal{F} from GL_2/\mathbb{Q} to GL_2/M. Thus $\mathcal{F} = \{f_k\}$ is a Hida family of parallel weights Hilbert modular Hecke eigenforms over M; one has that f_k is the base change of f_k from GL_2/\mathbb{Q} to GL_2/M; in particular $f_2 = f$.

We have the p-adic L-function $L_p(s, f_k) = L_p(s, f_k) \cdot L_p(s, f_k, \psi)$ attached to f_k.

In addition we have the two variable p-adic L-function $L_p(s, \mathcal{F}) = L_p(s, \{f_k\})$ associated to the parallel weights Hida family \mathcal{F}, that interpolates the p-adic L-function $L_p(s, f_k)$ associated to each f_k.
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

Let \mathcal{F} be the quadratic base change of F from GL_2/\mathbb{Q} to GL_2/M. Thus $\mathcal{F} = \{f_k\}$ is a Hida family of parallel weights Hilbert modular Hecke eigenforms over M; one has that f_k is the base change of f_k from GL_2/\mathbb{Q} to GL_2/M; in particular $f_2 = f$.

We have the p-adic L-function $L_p(s, f_k) = L_p(s, f_k) \cdot L_p(s, f_k, \psi)$ attached to f_k.

In addition we have the two variable p-adic L-function $L_p(s, \mathcal{F}) = L_p(s, \{f_k\})$ associated to the parallel weights Hida family \mathcal{F}, that interpolates the p-adic L-function $L_p(s, f_k)$ associated to each f_k. We denote this simply as $L_p(s, k)$.
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

Let \mathcal{F} be the quadratic base change of \mathcal{F} from GL_2/\mathbb{Q} to GL_2/M. Thus $\mathcal{F} = \{f_k\}$ is a Hida family of parallel weights Hilbert modular Hecke eigenforms over M; one has that f_k is the base change of f_k from GL_2/\mathbb{Q} to GL_2/M; in particular $f_2 = f$.

We have the p-adic L-function $L_p(s, f_k) = L_p(s, f_k) \cdot L_p(s, f_k, \psi)$ attached to f_k.

In addition we have the two variable p-adic L-function $L_p(s, \mathcal{F}) = L_p(s, \{f_k\})$ associated to the parallel weights Hida family \mathcal{F}, that interpolates the p-adic L-function $L_p(s, f_k)$ associated to each f_k. We denote this simply as $L_p(s, k)$. We are interested in the values of this two-variable p-adic L-function on the line $s = k/2$.
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

We have the following theorem: as before assume that E/\mathbb{Q} has split-multiplicative reduction at p, and that the sign of the functional equation for $L(s, E/\mathbb{Q})$ is equal to -1.
Application to a \(p \)-adic Gross-Zagier type formula of Bertolini-Darmon

We have the following theorem: as before assume that \(E/\mathbb{Q} \) has split-multiplicative reduction at \(p \), and that the sign of the functional equation for \(L(s, E/\mathbb{Q}) \) is equal to \(-1\). Then we have the formula:

\[
\frac{d^2}{dk^2} L_p(k/2, k) \bigg|_{k=2} = 2 \cdot (\log_{E,p}(P))^2
\]
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

We have the following theorem: as before assume that E/Q has split-multiplicative reduction at p, and that the sign of the functional equation for $L(s, E/Q)$ is equal to -1. Then we have the formula:

$$\frac{d^2}{dk^2} L_p(k/2, k) \bigg|_{k=2} = 2 \cdot (\log_{E,p}(P))^2$$

Here $\log_{E,p}$ is the p-adic logarithm on E/Q_p defined using Tate’s p-adic uniformization of E/Q_p, and $P \in E(M) \otimes Q$;
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

We have the following theorem: as before assume that E/\mathbb{Q} has split-multiplicative reduction at p, and that the sign of the functional equation for $L(s, E/\mathbb{Q})$ is equal to -1. Then we have the formula:

$$\frac{d^2}{dk^2}L_p(k/2, k)\bigg|_{k=2} = 2 \cdot (\log_{E,p}(P))^2$$

Here $\log_{E,p}$ is the p-adic logarithm on E/\mathbb{Q}_p defined using Tate’s p-adic uniformization of E/\mathbb{Q}_p, and $P \in E(M) \otimes \mathbb{Q}$; P is non-torsion iff $L'(1, E/M) \neq 0$ (thus if $L'(1, E/M) = 0$ then both sides of the formula are zero).
Application to a \(p \)-adic Gross-Zagier type formula of Bertolini-Darmon

This formula was proved by Bertolini-Darmon in their paper *Hida families and rational points on elliptic curves*,

Hida families and rational points on elliptic curves,
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

This formula was proved by Bertolini-Darmon in their paper *Hida families and rational points on elliptic curves*, in the case where E/\mathbb{Q} satisfies the extra condition that it has multiplicative reduction at some prime $q|N_+$.
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

This formula was proved by Bertolini-Darmon in their paper *Hida families and rational points on elliptic curves*, in the case where E/\mathbb{Q} satisfies the extra condition that it has multiplicative reduction at some prime $q|N_+$.

Without this extra condition, I had shown in a previous work that the following formula holds:
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

$$\left. \frac{d^2}{dk^2} L_p(k/2, k) \right|_{k=2} = \ell \cdot (\log_{E,p}(P))^2$$
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

$$\frac{d^2}{dk^2} L_p(k/2, k) \bigg|_{k=2} = \ell \cdot (\log_{E,p}(P))^2$$

where $P \in E(M) \otimes \mathbb{Q}$ as before, and ℓ is a rational number, with:
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

$$\frac{d^2}{dk^2} L_p(k/2, k) \bigg|_{k=2} = \ell \cdot (\log_{E,p}(P))^2$$

where $P \in E(M) \otimes \mathbb{Q}$ as before, and ℓ is a rational number, with:

$$\ell \equiv L^{alg}(1, E/M, \delta) \mod (\mathbb{Q}^\times)^2$$

for any $\delta \in \mathcal{C}$ with $L(1, E/M, \delta) \neq 0$.
Application to a p-adic Gross-Zagier type formula of Bertolini-Darmon

$$\left. \frac{d^2}{dk^2} L_p(k/2, k) \right|_{k=2} = \ell \cdot (\log_{E,p}(P))^2$$

where $P \in E(M) \otimes \mathbb{Q}$ as before, and ℓ is a rational number, with:

$$\ell \equiv L^{alg}(1, E/M, \delta) \mod (\mathbb{Q}^\times)^2$$

for any $\delta \in \mathcal{C}$ with $L(1, E/M, \delta) \neq 0$.

Our main theorem on special values thus amounts to saying that ℓ is two times the square of a rational number. Consequently the Bertolini-Darmon formula holds without the extra condition.