Generalized special cycles and theta series

Yousheng Shi

Department of Mathematics University of Wisconsin

October 22, 2020

Classical theta series

Define

$$heta(au) = \sum_{d \in \mathbb{Z}} e^{2\pi i d^2 au} = \sum_{n \in \mathbb{Z}} r(n) e^{2\pi i n au},$$

where $r(n) = \sharp \{x \in \mathbb{Z} \mid x^2 = n\}.$

Poisson summation formula:

$$\theta(-\frac{1}{4\tau}) = \sqrt{-2i\tau}\theta(\tau) \Rightarrow \theta(\frac{\tau}{4\tau+1}) = \sqrt{4\tau+1}\theta(\tau).$$

lackbox $\theta(au)$ is a weight $\frac{1}{2}$ modular form for the congruence subgroup

$$\Gamma_0(4) = \left\{ \left(egin{array}{cc} a & b \\ c & d \end{array}
ight) \mid c \equiv 0 \pmod 4
ight\} \subset \mathrm{SL}_2(\mathbb{Z}).$$

Classical theta series (continued)

► More generally, for a positive definite quadratic form *Q* with integer coefficients in *n* variables. Define

$$r_Q(n) = \sharp \{x \in \mathbb{Z}^n \mid Q(x) = n\}.$$

Then

$$heta_Q(au) = \sum_{d \in \mathbb{Z}^n} e^{2\pi i Q(d) au} = \sum_{n \in \mathbb{Z}} r_Q(n) e^{2\pi i n au}$$

is a weight $\frac{n}{2}$ modular form for some congruence subgroup $\Gamma(N)$.

For the quadratic form $Q(x) = x_1^2 + x_2^2 + x_3^2 + x_4^2$, $\theta_Q(\tau) = \theta(\tau)^4$. $\theta_Q(\tau)$ is a weight 2 modular form. By computing its Fourier coefficients we get the classical theorem of Lagrange (for $n \ge 0$):

$$r_Q(n) = 8\sigma(n) - 32\sigma(\frac{n}{4}),$$

where
$$\sigma(n) = \sum_{d \mid n} d$$
.

Dual reductive pairs

- A dual reductive pair (in the sense of Howe) is a pair of subgroups (G, G') of the group $Sp(\mathbb{W})$ of a vector space \mathbb{W} with a symplectic form $\langle \langle , \rangle \rangle$ such that G is the centralizer of G' in $Sp(\mathbb{W})$ and vice versa, and these groups acts reductively on \mathbb{W} .
- Example: Let V be a **k**-vector space with a symmetric form (,), W be a **k**-vector space with a symplectic form <,>. Then $\langle\langle,\rangle\rangle=(,)\otimes_{\mathbf{k}}<,>$ is a symplectic form on $\mathbb{W}=V\otimes_{\mathbf{k}}W$. This gives the dual pair $(O(V),\operatorname{Sp}(W))$.
- ▶ For a quadratic extension of fields k/k_0 , we have unitary dual pairs (U(V), U(W)). Hermitian form (,) on V and skew Hermitian form <,> on W. $\langle\langle\rangle\rangle = \operatorname{tr}_{k/k_0}(,)\otimes_{\mathbf{k}}<,>$ is a symplectic form on $W = V \otimes_{\mathbf{k}} W$.

Re-interpretation of theta series

- ▶ The philosophy of Siegel, Weil and Howe: theta series of G is a modular form of G'.
- Example: G = O(V), $G' = \mathrm{SL}_2(\mathbb{Q})$. Then $\mathrm{SL}_2(\mathbb{A})$ acts on $\mathcal{S}(V(\mathbb{A}))$ by the Weil representation ω . Let φ be a Bruhat-Schwartz function on $V(\mathbb{A})$, then the theta function

$$heta_{arphi}(g') = \sum_{\mathbf{x} \in V} \omega(g') \varphi(\mathbf{x})$$

is $\mathrm{SL}_2(\mathbb{Q})$ -invariant:

$$\theta_{\varphi}(\gamma g') = \theta_{\varphi}(g').$$

▶ Take $\varphi = \exp(-2\pi i Q(x)) \otimes \varphi(x)$ where φ is the characteristic function of $\mathbb{Z}^4 \otimes \mathbb{A}_f$. Then θ_{φ} is the Adelisation of θ_Q .

The geometry of indefinite forms

Let **k** be an imaginary quadratic field. V is a Hermitian space over **k** with the form (,) of signature (p,q) and an \mathcal{O}_k -lattice \mathcal{L} . Let $G = \mathrm{U}(V,(,))$. For a congruence subgroup Γ of G fixing \mathcal{L} , we have the locally symmetric space (connected Shimura variety) $M = \Gamma \backslash D$, where

$$D = \{z \mid z \text{ is a negative } q\text{-plane in } V \otimes_{\mathbf{k}} \mathbb{C}\}$$

is the symmetric space of $G(\mathbb{R})$.

▶ Can replace G = U(V, (,)) by G = GU(V, (,)) and work on the Shimura variety

$$\operatorname{Sh}(G,K)=G(\mathbf{k})\backslash D\times G(\mathbb{A}_f)/K.$$

▶ For the rest of the talk let $G = G(\mathbb{R})$.

Special cycles

▶ For $\mathbf{x} \in V^r$ such that $(\mathbf{x}, \mathbf{x}) > 0$. Define

$$U = \operatorname{span}_{\mathbb{C}}\{\mathbf{x}\}, G_U = \{g \in G \mid gx = x, \forall x \in U\} = G(U^{\perp}).$$

Denote the symmetric space of G_U by D_U or $D(U^{\perp})$. Let $\Gamma_U = \Gamma \cap G_U$. Then $C_{\mathbf{x}} = C_U = \Gamma_U \setminus D_U$ is a subvariety of $\Gamma \setminus D$. We call C_U a special cycles. Intuitively, this just corresponds to $\mathrm{U}(p-r,q) \hookrightarrow \mathrm{U}(p,q)$.

On the symmetric space level:

 $\{ \text{negative } q\text{-planes in } U^{\perp} \} \hookrightarrow \{ \text{negative } q\text{-planes in } V \}.$

Special cycles (continued)

Let T be a rank r Hermitian matrix with values in $\mathcal{O}_{\mathbf{k}}$. Then $\{x \in \mathcal{L}^r \mid (x,x) = T\}$ consists of a finite number of Γ orbits $\{\Gamma \cdot x_1, \ldots \Gamma \cdot x_\ell\}$. Define

$$C_T = \sum_{j=1}^{\ell} C_{\mathsf{x}_j}.$$

- The cycle C_T has a moduli interpretation and can be defined on the integral model of the unitary Shimura variety.
- ▶ If V has signature (1,1), r=1, and $\Gamma = \Gamma_0(N)$, C_m is (a union of) the image of the Heegner point under the m-th Heck operator on modular curve.

Geometric theta series

- ▶ Dual pair: $U(p,q) \times U(r,r)$.
- ▶ The symmetric space of U(r, r) is

$$\mathcal{H}_r = \{ \tau = u + iv \mid u \in \operatorname{Herm}_r(\mathbb{C}), v \in \operatorname{Herm}_{r,>0}(\mathbb{C}) \}.$$

Theorem (Kudla-Millson 1980s): Assume Γ is co-compact. The geometric theta series

$$\theta(\tau) = \sum_{T \in \operatorname{Herm}_{r, \geq 0}(\mathcal{O}_{k})} [C_{T}] \exp(2\pi i \operatorname{tr}(T\tau)) \in H_{*}(\Gamma \backslash D, \mathbb{C})$$

is a modular form on \mathcal{H}_r of weight $\frac{p+q}{2}$ with respect to some congruence subgroup. The definition of C_T has to be modified if T is only semi-positive definite.

Remarks on KM theory

- ► The work of Kudla-Millson is inspired by the work of Hirzbruch-Zagier on Hilbert modular surfaces.
- Method: Construct differential forms with values in the Weil representation.
- ▶ One application (Bergeron-Millson-Moeglin): Cases of Hodge conjecture for O(n,2) and U(n,1) Shimura varieties.

Generalized special cycles

- ▶ What if (\mathbf{x}, \mathbf{x}) has signature (r, s) with s > 0?
- Let U be a subspace of V of signature (r,s) $(0 \le r \le p, 0 \le s \le q)$. Then $G_U \cong U(p-r,q-s)$ and D_U is the set of negative (q-s)-planes in U^{\perp} .
- ▶ Choose a point $z' \in D(U)$ which is a negative s-plane in U. Define an embedding $s_{z'}: D_U \to D$:

$$z\mapsto z'\oplus z$$
.

We call the image $D_{U,z'}$ (or $D_{x,z'}$). It is totally geodesic and complex analytic in D.

Generalized special cycles (continued)

- Let $\Gamma_U = \Gamma \cap G_U$. The embedding $s_{z'}$ decsends to a map $\Gamma_U \backslash D_{U,z'} \to M = \Gamma \backslash D$ which we still denote as $s_{z'}$. The image is an algebraic subvariety: a generalized special cycle denoted as $C_{U,z'}$. The homology class $[C_{U,z'}]$ does not depends on z'.
- In general $s_{z'}$ is not an embedding, however we can pass to subgroups of Γ such that the corresponding map is an embedding.
- When G = U(p, q), O(p, q) or Sp(p, q) and U is positive definite, the choice of z' in the above definition is unnecessary. The cycle C_U is the special cycle defined by Kudla-Millson.

Main result and strategy

- ▶ For $T \in \operatorname{Herm}_{r+s}(\mathcal{O}_k)$ with signature (r, s). Define C_T as in the case of special cycles.
- ▶ We would like to construct a theta series whose "non-degenerate" Fourier coefficients are C_T.
- Our strategy is similar to that of Kudla-Millson. The key step is to find a special cocycle φ in the relative Lie algebra cohomology with values in the Weil representation which will give rise to the Poincaré duals of generalized special cycles . Then we apply the theta distribution to φ to get $\theta(\varphi)$ which will be automatically automorphic.
- My work actually deals with the case G = U(p, q), $Sp(2n, \mathbb{R})$ or $O^*(2n)$.

The Weil representation and the theta correspondence

- The Weil representation ω : A certain double cover $Mp(2n,\mathbb{R})$ of $Sp(2n,\mathbb{R})$ acts on $L^2(\mathbb{R}^n)$ unitarily and on $\mathcal{S}(\mathbb{R}^n)$ smoothly. We call this representation the Weil representation (or the oscillator representation)
- ▶ The Schrödinger model $\mathcal{S}(\mathbb{R}^n)$ is convenient for studying geometry. The infinitesimal Fock model $\mathfrak{W} \cong \operatorname{Pol}(\mathbb{C}^n)$ is convenient for studying K-types.
- ▶ Dual reductive pair: $G \times G' \subset \operatorname{Sp}(2n, \mathbb{R})$ can be lifted to $\widetilde{G} \times \widetilde{G'} \subset \operatorname{Mp}(2n, \mathbb{R})$.
- ► Theta correspondence: one-to-one correspondence of representations of \widetilde{G} and $\widetilde{G'}$ that "occurs" in $(\mathcal{S}(\mathbb{R}^n), \omega)$:

$$\pi \leftrightarrow \pi' = \theta_{G,G'}(\pi)$$

where $\pi \in R(\widetilde{G}, \omega), \pi' \in R(\widetilde{G'}, \omega)$.

Lie algebra cohomology $H^{\bullet}(\mathfrak{g}, K; \mathfrak{W})$

► For each maximal compact subgroup *K* of *G*. Cartan decomposition:

$$\mathfrak{g}_0\otimes_{\mathbb{R}}\mathbb{C}=\mathfrak{g}=\mathfrak{k}+\mathfrak{p}_-+\mathfrak{p}_+.$$

Chain complex:

$$C^{ullet}(\mathfrak{g},K;\mathfrak{W})=\mathsf{Hom}_K(\wedge^{ullet}(\mathfrak{g}/\mathfrak{k}),\mathfrak{W})\cong(\wedge^{ullet}(\mathfrak{p}^*)\otimes\mathfrak{W})^K,$$

where $\mathfrak g$ the Lie algebra of G with the Cartan decomposition $\mathfrak g=\mathfrak p+\mathfrak k$. $\mathfrak W$ is the Schrödinger model or infinitesimal Fock model of the Weil representation.

There is an isomorphism of chain complex:

$$C^{ullet}(\mathfrak{g}, K; \mathfrak{W}) \stackrel{\sim}{\longrightarrow} \Omega(D, \mathfrak{W})^G : \psi \mapsto \tilde{\psi}(g, \mathsf{x}) \stackrel{\Delta}{=} (L_{g^{-1}})^*(\psi)(g^{-1}\mathsf{x}).$$

$$\mathsf{ev}_{\mathsf{x}} : \Omega(D, \mathfrak{W})^G \to \Omega(D, \mathbb{C})^{G_\mathsf{x}}.$$

Anderson's thesis

- ▶ In his thesis, Greg Anderson constructed classes in the Dolbeault cohomology group $H^{\bullet,0}(\mathfrak{g},\mathfrak{k};\mathfrak{W})$.
- In case of the unitary group U(p,q), for a pair of integers $1 \le r \le p, 1 \le s \le q$, Anderson's thesis constructed a cocycle φ_+ in the group $H^{(R,0)}(\mathfrak{g},\mathfrak{k},\mathfrak{W}_+^{\mathfrak{p}_-})$ where \mathfrak{W}_+ is the Weil representation of the compact dual pair $U(p,q) \times U(0,r+s)$ and R = pq (p-r)(q-s) which is the complex co-dimension of $C_{U,z'}$ if U has signature (r,s). $\mathfrak{W}_+^{\mathfrak{p}_-}$ is the subspace of \mathfrak{W}_+ annihilated by \mathfrak{p}^- .
- ▶ His construction essentially realized a Vogan-Zuckerman representation \mathcal{A}_q as a sub representation in \mathfrak{W} . As a result, one can show that φ_+ is closed $(d\varphi_+ = 0)$.

Outer wedge product in the Fock model

- Let \mathfrak{W}_+ be the Polynomial Fock space of the dual pair $(\mathsf{U}(p,q),\mathsf{U}(0,r+s))$ and $\varphi_+\in\mathsf{Hom}_K(\wedge^R\mathfrak{p}^+,\mathfrak{W}_+^{\mathfrak{p}^-})$ be the cocycly of Anderson.
- A mirror construction: $\varphi_- \in \operatorname{Hom}_{\mathcal{K}}(\wedge^R \mathfrak{p}^-, \mathfrak{W}_-^{\mathfrak{p}^+})$. Here \mathfrak{W}_- is the Polynomial Fock space of $(\mathsf{U}(p,q), \mathsf{U}(r+s,0))$.
- ▶ Both \mathfrak{W}_+ and \mathfrak{W}_- can be realized as Polynomial space on \mathbb{C}^{r+s} . $\mathfrak{W} = \mathfrak{W}_+ \boxtimes \mathfrak{W}_-$ is the Polynomial Fock space of $(\mathsf{U}(p,q),\mathsf{U}(r+s,r+s))$. Take the outer tensor product:

$$\varphi = \varphi_+ \wedge \varphi_- \in \operatorname{Hom}_K(\wedge^{(R,R)}\mathfrak{p},\mathfrak{W}).$$

Since $d = d_{+} \boxtimes 1 + 1 \boxtimes d_{-}$, $d\varphi = 0$.

In the unitary case, when s=0, φ is the cocycle construced by Kudla-Millson.

Theta distribution on φ

ightharpoonup Form the theta series using φ

$$\theta_{\varphi}(\mathbf{g},\mathbf{g}') = \sum_{\mathbf{x} \in \mathcal{L}^{r+s}} \omega(\mathbf{g},\mathbf{g}') \varphi(\mathbf{x}) = \sum_{T} \theta_{T,\varphi}(\mathbf{g},\mathbf{g}'),$$

where

$$\theta_{T,\varphi}(g,g') = \sum_{\substack{\mathbf{x} \in \mathcal{L}^{r+s} \\ (\mathbf{x},\mathbf{x}) = T}} \omega(g,g') \varphi(\mathbf{x}).$$

▶ By the theory of Weil, there is a congruence subgroup $\Gamma' \in G'$ such that θ_{φ} is Γ' -invariant.

Main theorem

Let T be a rank r+s Hermitian matrix of signature (r,s). Then $\{x \in L^k \mid (x,x) = T\}$ consists of a finite number of Γ orbits $\{\Gamma \cdot x_1, \ldots \Gamma \cdot x_\ell\}$. Define

$$[C_T] = \sum_{j=1}^{\ell} [C_{\mathsf{x}_j, \mathsf{z}'_j}].$$

▶ **Theorem** (Shi) Assume again that Γ is co-compact. For $T \in \operatorname{Herm}_{r+s}(\mathcal{O}_{\mathbf{k}})$ with signature (r,s), we have

$$[\theta_{\mathcal{T},\varphi}(z,g')] = \kappa(g',\mathcal{T})PD([C_{\mathcal{T}}]),$$

where $PD([C_T]) \in H^*(M)$ is the Poincaré dual of $[C_T]$. And for a proper choice of g', $\kappa(g', T) \neq 0$.

Poincaré duality and Thom form

Let M be a compact manifold and C a closed submanifold, we say a form φ is the Poincaré dual of C if for any $\eta \in \Omega^{\bullet}(M), d\eta = 0$:

$$\int_{M} \eta \wedge \varphi = \int_{C} \eta.$$

Let $E \to C$ be a vector bundle over a compact manifold, we say that φ is a Thom for of $E \to C$ if the support of φ is vertically compact and for any $\eta \in \Omega^{\bullet}(E)$, $d\eta = 0$:

$$\int_{\mathcal{E}} \eta \wedge \varphi = \int_{\mathcal{C}} \eta.$$

▶ There are generalizations of compactly supported Thom forms. These are rapidly decreasing forms on *E* satisfying the same defining equation as compactly supported Thom forms.

Geometry of the tube

- Let $M = \Gamma \backslash D$ and $E = E_U = \Gamma_U \backslash D$. E_U is topologically a vector bundle over the generalized special cycle $D_{U,z'}$.
- ► The unfolding lemma:

$$\int_{M} \eta \wedge \sum_{y \in \Gamma \cdot \mathbf{x}} \varphi(y) = \int_{E_{U}} \eta \wedge \varphi(\mathbf{x}).$$

In order to show that $\sum_{y \in \Gamma \cdot \mathbf{x}} \varphi(y)$ is the Poincaré dual of $C_{\mathbf{x}, \mathbf{z}'}$, it suffices to show that $\varphi(\mathbf{x})$ is a Thom form for $E_U \to \Gamma_U \backslash D_{U, \mathbf{z}'}$.

Rapid decrease of Schwartz function valued forms on the tube $E_{\mathcal{U}}$

▶ Let $z_0 \in D$ be the fixed base point corresponding to K. Recall that

$$C^{\bullet}(\mathfrak{g},K;\mathfrak{W}) \stackrel{\sim}{\longrightarrow} \Omega(D,\mathfrak{W})^{G}: \psi \mapsto \tilde{\psi}(g,\mathsf{x}) \stackrel{\Delta}{=} (L_{g^{-1}})^{*}(\psi)(g^{-1}\mathsf{x}).$$

Define $d(z, D_{U,z'})$ to be the Riemannian distance from z to the cycle $D_{U,z'}$. Theorem (Shi) Let $U = \operatorname{span}\{x\}$, $z' \in D(U)$ and $z_0 \in D_{U,z'}$. For any $\psi \in C^{\bullet}(\mathfrak{g}, K; \mathfrak{W})$, for any positive number ρ , there is a constant C_{ρ} such that

$$||\tilde{\psi}(g,\mathsf{x})|| \leq C_{\rho} \exp\{-\rho \cdot d(g\mathsf{z}_0,D_{U,z'})\}.$$

An asymptotic estimate

Recall that we have a fibration $\pi: E_U \to C_{U,z'}$. Let F be any fiber of π . Then

$$\kappa(g',T) = \int_F \tilde{\varphi}(z,g',x).$$

This period integral is hard to compute in general due to the fact that F is not a symmetric space. However, as $\lambda \to \infty$, $\tilde{\varphi}(z,g',\lambda x)$ is more and more concentrated near the neighborhood of $C_{U,z'}$ and its major term is the volume form of F at the base point $z_0 \in C_{U,z'}$. Hence we apply the method of Laplace to compute the asymptotic value of $\kappa(g',\lambda T)$.

Table of dual reductive pairs over $\mathbb R$

- ► Type I: $(O(p,q), \operatorname{Sp}(2n,\mathbb{R})) \subset \operatorname{Sp}(2n(p+q),\mathbb{R})$ $(U(p,q), U(r,s)) \subset \operatorname{Sp}(2(p+q)(r+s),\mathbb{R})$ $(\operatorname{Sp}(p,q), \operatorname{O}^*(2n,\mathbb{R})) \subset \operatorname{Sp}(4n(p+q),\mathbb{R})$ $(O(n,\mathbb{C}), \operatorname{Sp}(2m,\mathbb{C})) \subset \operatorname{Sp}(4mn,\mathbb{R})$
- ► Type II: $(GL(m,\mathbb{R}), GL(n,\mathbb{R})) \subset GL(2mn,\mathbb{R})$ $(GL(m,\mathbb{C}), GL(n,\mathbb{C})) \subset GL(4mn,\mathbb{R})$ $(GL(m,\mathbb{H}), GL(n,\mathbb{H})) \subset GL(8mn,\mathbb{R})$
- ▶ We focus on dual reductive pairs of type I. In this case, G is the linear isometry group of (V,(,)) where V is D-vector space with $D = \mathbb{R}$, \mathbb{C} or \mathbb{H} and (,) is a non-degenerate Hermitian or skew Hermitian form on V.

The other two families of Hermitian symmetric domains

- ▶ Beside the unitary dual pairs, my work can also be carried out when $G = \operatorname{Sp}(2n, \mathbb{R})$ or $G = \operatorname{O}^*(2n)$. These covers all the cases when the associated D is Hermtian symmetric except for the case $\operatorname{O}(n,2)$.
- ▶ Dual pairs: $(Sp(2n, \mathbb{R}), O(2r, 2r))$ and $(O^*(2n), Sp(r, r))$.
- What is the same: The definition of generalized special cycles (algebraic cycles) and the main technique (Weil representation and Anderson's thesis).
- What is different:
 - ▶ There is no special cycle in the sense of Kudla and Millson.
 - ► The corresponding form (,) has no signature, so the main theorem is true for all non-degenerate Fourier coefficients.

Other dual pairs

▶ Can also let G = O(p, q), Sp(p, q), $O(n, \mathbb{C})$ or $Sp(2n, \mathbb{C})$. Can define generalized special cycles on the associated locally symmetric spaces. Similar theorems can be obtained (work in preparation by Millson and Shi).

Thank you!